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Abstract We report here on an experimental investigation
of LTL satisfiability checking via a reduction to model check-
ing. By using large LTL formulas, we offer challenging
model-checking benchmarks to both explicit and symbolic
model checkers. For symbolic model checking, we use
CadenceSMV, NuSMV, and SAL-SMC. For explicit model
checking, we use SPIN as the search engine, and we test
essentially all publicly available LTL translation tools. Our
experiments result in two major findings. First, most LTL
translation tools are research prototypes and cannot be con-
sidered industrial quality tools. Second, when it comes to
LTL satisfiability checking, the symbolic approach is clearly
superior to the explicit approach.
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1 Introduction

Model-checking tools are successfully used for checking
whether systems have desired properties [12]. The
application of model-checking tools to complex systems
involves a nontrivial step of creating a mathematical model
of the system and translating the desired properties into a
formal specification. When the model does not satisfy the
specification, model-checking tools accompany this negative
answer with a counterexample, which points to an inconsis-
tency between the system and the desired behaviors. It is
often the case, however, that there is an error in the system
model or in the formal specification. Such errors may not be
detected when the answer of the model-checking tool is pos-
itive: while a positive answer does guarantee that the model
satisfies the specification, the answer to the real question,
namely, whether the system has the intended behavior, may
be different.

The realization of this unfortunate situation has led to the
development of several sanity checks for formal verification
[31]. The goal of these checks is to detect errors in the system
model or the properties. Sanity checks in industrial tools are
typically simple, ad hoc tests, such as checking for enabling
conditions that are never enabled [33]. Vacuity detection pro-
vides a more systematic approach. Intuitively, a specification
is satisfied vacuously in a model if it is satisfied in some
non-interesting way. For example, the linear temporal logic
(LTL) specification �(req → ♦grant) (“every request is
eventually followed by a grant”) is satisfied vacuously in
a model with no requests. While vacuity checking cannot
ensure that whenever a model satisfies a formula, the model
is correct, it does identify certain positive results as vacuous,
increasing the likelihood of capturing modeling and specifi-
cation errors. Several papers on vacuity checking have been
published over the last few years [2,3,9,28,29,32,36,39],
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and various industrial model-checking tools support vacuity
checking [2,3,9].

All vacuity-checking algorithms check whether a sub-
formula of the specification does not affect the satisfaction
of the specification in the model. In the example above,
the subformula req does not affect satisfaction in a model
with no requests. There is, however, a possibility of a vac-
uous result that is not captured by current vacuity-checking
approaches. If the specification is valid, that is, true in all
models, then model checking this specification always results
in a positive answer. Consider for example the specification
�(b1 → ♦b2), where b1 and b2 are propositional formulas.
If b1 and b2 are logically equivalent, then this specification
is valid and is satisfied by all models. Nevertheless, current
vacuity-checking approaches do not catch this problem. We
propose a method for an additional sanity check to catch
exactly this sort of oversight.

Writing formal specifications is a difficult task, which is
prone to error just as implementation development is error
prone. However, formal verification tools offer little help in
debugging specifications other than standard vacuity check-
ing. Clearly, if a formal property is valid, then this is certainly
due to an error. Similarly, if a formal property is unsatisfi-
able, that is, true in no model, then this is also certainly due
to an error. Even if each individual property written by the
specifier is satisfiable, their conjunction may very well be
unsatisfiable. Recall that a logical formula ϕ is valid iff its
negation ¬ϕ is not satisfiable. Thus, as a necessary sanity
check for debugging a specification, model-checking tools
should ensure that both the specification ϕ and its negation
¬ϕ are satisfiable. (For a different approach to debugging
specifications, see [1].)

A basic observation underlying our work is that LTL sat-
isfiability checking can be reduced to model checking. Con-
sider a formula ϕ over a set Prop of atomic propositions. If
a model M is universal, that is, it contains all possible traces
over Prop, then ϕ is satisfiable precisely when the model M
does not satisfy ¬ϕ. Thus, it is easy to add a satisfiability-
checking feature to LTL model-checking tools.

LTL model checkers can be classified as explicit or sym-
bolic. Explicit model checkers, such as SPIN [30] or SPOT
[17], construct the state-space of the model explicitly and
search for a trace falsifying the specification [13]. In con-
trast, symbolic model checkers, such as CadenceSMV [34],
NuSMV [10], and VIS [6], represent the model and analyze
it symbolically using binary decision diagrams (BDDs) [8].

LTL model checkers follow the automata-theoretic
approach [47], in which the complemented LTL specification
is explicitly or symbolically translated to a Büchi automaton,
which is then composed with the model under verification;
see also [46]. The model checker then searches for a trace
of the model that is accepted by the automaton. All sym-
bolic model checkers use the symbolic translation described

in [11] and the analysis algorithm of [19], though Cadenc-
eSMV and VIS try to optimize further. There has been exten-
sive research over the past decade into explicit translation
of LTL to automata [14,15,20–23,26,27,40,42,44], but it is
difficult to get a clear sense of the state of the art from a
review of the literature. Measuring the performance of LTL
satisfiability checking enables us to benchmark the perfor-
mance of LTL model checking tools, and, more specifically,
of LTL translation tools.

We report here on an experimental investigation of LTL
satisfiability checking via a reduction to model checking.
By using large LTL formulas, we offer challenging model-
checking benchmarks to both explicit and symbolic model
checkers. For symbolic model checking, we use Cadenc-
eSMV, NuSMV, and SAL-SMC. For explicit model check-
ing, we use SPIN as the search engine, and we test essentially
all publicly available LTL translation tools. We use a wide
variety of benchmark formulas, either generated randomly,
as in [15], or using a scalable pattern (e.g.,

∧n
i=1 pi ). LTL

formulas typically used for evaluating LTL translation tools
are usually too small to offer challenging benchmarks. Note
that real specifications typically consist of many temporal
properties, whose conjunction ought to be satisfiable. Thus,
studying satisfiability of large LTL formulas is quite appro-
priate.

Our experiments resulted in two major findings. First,
most LTL translation tools are research prototypes and can-
not be considered industrial quality tools. Many of them are
written in scripting languages such as Perl or Python, which
has a drastic negative impact on their performance. Further-
more, these tools generally degrade gracelessly, often yield-
ing incorrect results with no warning. Among all the explicit
tools we tested, only SPOT can be considered an industrial
quality tool. Second, when it comes to LTL satisfiability
checking, the symbolic approach is clearly superior to the
explicit approach. Even SPOT, the best explicit LTL transla-
tor in our experiments, was rarely able to compete effectively
against the symbolic tools. This result is consistent with the
comparison of explicit and symbolic approaches to modal
satisfiability [37,38], but is somewhat surprising in the con-
text of LTL satisfiability in view of [41].

Related software, called lbtt,1 provides an LTL-to-
Büchi explicit translator testbench and environment for basic
profiling. Thelbtt tool performs simple consistency checks
on an explicit tool’s output automata, accompanied by sam-
ple data when inconsistencies in these automata are detected
[43]. Whereas the primary use of lbtt is to assist developers
of explicit LTL translators in debugging new tools or com-
paring a pair of tools, we compare performance with respect
to LTL satisfiability problems across a host of different tools,
both explicit and symbolic.

1 www.tcs.hut.fi/Software/lbtt/.
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The structure of the paper is as follows. Section 2 pro-
vides the theoretical background for this work. In Sect. 3,
we describe the tools studied here. We define our experi-
mental method in Sect. 4, and detail our results in Sect. 5.
We conclude with a discussion in Sect. 6.

2 Theoretical background

Linear temporal logic (LTL) formulas are composed of a
finite set Prop of atomic propositions, the Boolean con-
nectives ¬, ∧, ∨, and →, and the temporal connectives U
(until), R (release), X (also called © for “next time”), �
(also called G for “globally”) and ♦ (also called F for “in the
future”). We define LTL formulas inductively:

Definition 1 For every p ∈ Prop, p is a formula. If ϕ and
ψ are formulas, then so are:

¬ϕ ϕ ∧ ψ ϕ → ψ ϕ U ψ �ϕ
ϕ ∨ ψ Xϕ ϕ R ϕ ♦ϕ

LTL formulas describe the behavior of the variables in Prop
over a linear series of time steps starting at time zero and
extending infinitely into the future. We satisfy such formu-
las over computations, which are functions that assign truth
values to the elements of Prop at each time instant [18].

Definition 2 We interpret LTL formulas over computations
of the form π : ω → 2Prop. We define π, i � ϕ (compu-
tation π at time instant i ∈ ω satisfies LTL formula ϕ) as
follows:

• π, i � p for p ∈ Prop if p ∈ π(i).
• π, i � ϕ ∧ ψ if π, i � ϕ and π, i � ψ .
• π, i � ¬ϕ if π, i � ϕ.
• π, i � Xϕ if π, i + 1 � ϕ.
• π, i � ϕUψ if ∃ j ≥ i , such that π, j � ψ and ∀k, i ≤

k < j , we have π, k � ϕ.
• π, i � ϕRψ if ∀ j ≥ i , if π, j � ψ , then ∃k, i ≤ k < j ,

such that π, k � ϕ.
• π, i � ♦ϕ if ∃ j ≥ i , such that π, j � ϕ.
• π, i � �ϕ if ∀ j ≥ i , π, j � ϕ.

We take models(ϕ) to be the set of computations that satisfy
ϕ at time 0, i.e., {π : π, 0 � ϕ}.
In automata-theoretic model checking, we represent LTL
formulas using Büchi automata.

Definition 3 A Büchi automaton (BA) is a quintuple (Q, �,
δ, q0, F) where:

• Q is a finite set of states.
• � is a finite alphabet.
• δ : Q ×� → Q is the transition relation.

• q0 ∈ Q is the initial state.
• F ⊆ Q is a set of final states.

A run of a Büchi automaton over an infinite word w =
w0, w1, w2, . . . ∈ � is a sequence of states q0, q1, q2, . . . ∈
Q such that ∀i ≥ 0, δ(qi , wi ) = qi+1. An infinite word w
is accepted by the automaton if the run over w visits at least
one state in F infinitely often. We denote the set of infinite
words accepted by an automaton A by Lω(A).

A computation satisfying LTL formula ϕ is an infinite word
over the alphabet � = 2Prop. The next theorem relates the
expressive power of LTL to that of Büchi automata.

Theorem 1 [48] Given an LTL formula ϕ, we can construct
a Büchi automaton Aϕ = 〈

Q, �, δ, q0, F
〉

such that |Q| is
in 2O(|ϕ|), � = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

This theorem reduces LTL satisfiability checking to auto-
mata-theoretic nonemptiness checking, as ϕ is satisfiable iff
models(ϕ) �= ∅ iff Lω(Aϕ) �= ∅.

We can now relate LTL satisfiability checking to LTL
model checking. Suppose we have a universal model M that
generates all computations over its atomic propositions; that
is, we have that Lω(M) = (2Prop)ω. We now have that M
does not satisfy ¬ϕ if and only if ϕ is satisfiable. Thus, ϕ is
satisfiable precisely when the model checker finds a counter-
example.

3 Tools tested

In total, we tested twelve LTL compilation algorithms from
ten research tools. To offer a broad, objective picture of the
current state of the art, we tested the algorithms against sev-
eral different sequences of benchmarks, comparing, where
appropriate, the size of generated automata in terms of num-
bers of states and transitions, translation time, model analysis
time, and correctness of the output.

3.1 Explicit tools

The explicit LTL model checker SPIN [30] accepts either
LTL properties, which are translated internally into Büchi
automata, or Büchi automata for complemented properties
(“never claims”). We tested SPIN with Promela (PROcess
MEta LAnguage) never claims produced by several LTL
translation algorithms. (As SPIN’s built-in translator is domi-
nated by TMP, we do not show results for this translator.) The
algorithms studied here represent all tools publicly available
in 2006, as described in the following table:
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Explicit Automata Construction Tools

LTL2AUT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . (Daniele–Guinchiglia–Vardi)
Implementations (Java, Perl) . . . . . . . . . . . . . . . LTL2Buchi, Wring

LTL2BA (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Oddoux–Gastin)
LTL2Buchi (Java) . . . . . . . . . . . . . . . . . . . . . . . . (Giannakopoulou–Lerda)
LTL → NBA (Python) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Fritz–Teegen)
Modella (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Sebastiani–Tonetta)
SPOT (C++) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . (Duret-Lutz–Poitrenaud–Rebiha–Baarir–Martinez)
TMP (SML of NJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Etessami)
Wring (Perl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Somenzi–Bloem)

We provide here short descriptions of the tools and their
algorithms, detailing aspects which may account for our
results. We also note that aspects of implementation includ-
ing programming language, memory management, and atten-
tion to efficiency, seem to have significant effects on tool
performance.

Classical algorithms. Following [48], the first optimized
LTL translation algorithm was described in [26]. The basic
optimization ideas were: (1) generate states by demand only,
(2) use node labels rather than edge labels to simplify trans-
lation to Promela, and (3) use a generalized Büchi accep-
tance condition so eventualities can be handled one at a time.
The resulting generalized Büchi automaton (GBA) is then
“degeneralized” or translated to a BA. LTL2AUT improved
further on this approach by using lightweight propositional
reasoning to generate fewer states [15]. We tested two imple-
mentations of LTL2AUT, one included in the Java-based
LTL2Buchi tool and one included in the Perl-based Wring
tool.

TMP2 [20] and Wring3 [42] each extend LTL2AUT with
three kinds of additional optimizations. First, in the pre-
translation optimization, the input formula is simplified using
Negation Normal Form (NNF) and extensive sets of rewrite
rules, which differ between the two tools as TMP adds rules
for left-append and suffix closure. Second, mid-translation
optimizations tighten the LTL-to-automata translation algo-
rithms. TMP optimizes an LTL-to-GBA-to-BA translation,
while Wring performs an LTL-to-GBA translation utilizing
Boolean optimizations for finding minimally-sized covers.
Third, the resulting automata are minimized further during
post-translation optimization. TMP minimizes the resulting
BA by simplifying edge terms, removing “never accepting”
nodes and fixed-formula balls, and applying a fair simulation
reduction variant based on partial orders produced by itera-
tive color refinement. Wring uses forward and backward sim-
ulation to minimize transition- and state-counts, respectively,

2 We used the binary distribution called run_delayed_trans_
06_compilation.x86-linux. www.bell-labs.com/project/TMP/.
3 Version 1.1.0, June 21, 2001. www.ist.tugraz.at/staff/bloem/wring.
html.

merges states, and performs fair set reduction via strongly
connected components. Wring halts translation with a GBA,
which we had to degeneralize.

LTL2Buchi4 [27] optimizes the LTL2AUT algorithm by
initially generating transition-based generalized Büchi auto-
mata (TGBA) rather than node-labeled BA, to allow for more
compaction based on equivalence classes, contradictions, and
redundancies in the state space. Special attention to efficiency
is given during the ensuing translation to node-labeled BA.
The algorithm incorporates the formula rewriting and BA-
reduction optimizations of TMP and Wring, producing auto-
mata with less than or equal to the number of states and fewer
transitions.

Modella5 focuses on minimizing the nondeterminism of
the property automaton in an effort to minimize the size
of the product of the property and system model automata
during verification [40]. If the property automaton is deter-
ministic, then the number of states in the product autom-
aton will be at most the number of states in the system
model. Thus, reducing nondeterminism is a desirable goal.
This is accomplished using semantic branching, or branch-
ing on truth assignments, rather than the syntactic branch-
ing of LTL2AUT. Modella also postpones branching when
possible.

Alternating automata tools. Instead of the direct trans-
lation approach of [48], an alternative approach, based on
alternating automata, was proposed in [45]. In this approach,
the LTL formula is first translated into an alternating Büchi
automaton, which is then translated to a nondeterministic
Büchi automaton.

LTL2BA6 [23] first translates the input formula into a
very weak alternating automaton (VWAA). It then uses vari-
ous heuristics to minimize the VWAA, before translating it to
GBA. The GBA in turn is minimized before being translated
into a BA, and finally the BA is minimized further. Thus, the
algorithm’s central focus is on optimization of intermediate
representations through iterative simplifications and on-the-
fly constructions.

LTL→NBA7 follows a similar approach to that of LTL2
BA [21]. Unlike the heuristic minimization of VWAA used in
LTL2BA, LTL→NBA uses a game-theoretic minimization
based on utilizing a delayed simulation relation for on-the-fly
simplifications. The novel contribution is that the simulation

4 Original Version distributed from http://javapathfinder.sourceforge.
net/; description: http://ti.arc.nasa.gov/profile/dimitra/projects-tools/#
LTL2Buchi.
5 Version 1.5.8.1. http://www.science.unitn.it/~stonetta/modella.html.
6 Version 1.0; October 2001. http://www.lsv.ens-cachan.fr/~gastin/
ltl2ba/index.php.
7 This original version is a prototype. http://www.ti.informatik.
uni-kiel.de/~fritz/; download: http://www.ti.informatik.uni-kiel.de/
~fritz/LTL-NBA.zip.
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relation is computed from the VWAA, which is linear in the
size of the input LTL formula, before the exponential blow-up
incurred by the translation to a GBA. The simulation relation
is then used to optimize this translation.

Back to classics SPOT8 is the most recently developed LTL-
to-Büchi optimized translation tool [17]. It does not use alter-
nating automata, but borrows ideas from all the tools
described above, including reduction techniques, the use of
TGBAs, minimizing non-determinism, and on-the-fly
constructions. It adds two important optimizations: (1) unlike
all other tools, it uses pre-branching states, rather than post-
branching states (as introduced in [14]), and (2) it uses BDDs
[7] for propositional reasoning.

3.2 Symbolic tools

Symbolic model checkers describe both the system model
and property automaton symbolically: states are viewed as
truth assignments to Boolean state variables and the transition
relation is defined as a conjunction of Boolean constraints on
pairs of current and next states [8]. The model checker uses
a BDD-based fix-point algorithm to find a fair path in the
model-automaton product [19].

CadenceSMV9 [34] and NuSMV10 [10] both evolved
from the original Symbolic Model Verifier developed at CMU
[35]. Both tools support LTL model checking via the sym-
bolic translation of LTL to transition systems with FAIR-
NESS constraints, as described in [11]. FAIRNESS con-
straints specify sets of states that must occur infinitely often
in any path. They are necessary to ensure that the subformu-
la ψ holds in some time step for specifications of the form
ϕ U ψ and ♦ψ . CadenceSMV additionally implements heu-
ristics that attempt to further optimize the reduction of LTL
model checking to checking nonemptiness of fair transition
systems, in some cases [5].

SAL11 (Symbolic Analysis Laboratory), developed at
SRI, is a suite of tools combining a rich expression language
with a host of tools for several forms of mechanized formal
analysis of state machines [4]. SAL-SMC (Symbolic Model
Checker) uses LTL as its primary assertion language and
directly translates LTL assertions into Büchi automata, which
are then represented, optimized, and analyzed as BDDs. SAL-
SMC also employs an extensive set of optimizations during
preprocessing and compilation, including partial evaluation,
common subexpression elimination, slicing, compiling arith-
metic values and operators into bit vectors and binary “cir-

8 Version 0.3. http://spot.lip6.fr/wiki/SpotWiki.
9 Release 10-11-02p1. http://www.kenmcmil.com/smv.html.
10 Version 2.4.3-zchaff. http://nusmv.irst.itc.it/.
11 Version 2.4. http://sal.csl.sri.com.

cuits,” as well as optimizations during the direct translation
of LTL assertions into Büchi automata [16].

4 Experimental methods

4.1 Performance evaluation

We ran all tests in the fall of 2006 on Ada, a Rice University
Cray XD1 cluster.12 Ada is comprised of 158 nodes with 4
processors (cores) per node for a total of 632 CPUs in pairs
of dual core 2.2 GHz AMD Opteron processors with 1 MB
L2 cache. There are 2 GB of memory per core or a total of
8 GB of RAM per node. The operating system is SuSE Li-
nux 9.0 with the 2.6.5 kernel. Each of our tests was run with
exclusive access to one node and was considered to time out
after 4 hours of run time. We measured all timing data using
the Unix time command.

Explicit tools Each test was performed in two steps. First,
we applied the translation tools to the input LTL formula and
ran them with the standard flags recommended by the tools’
authors, plus any additional flag needed to specify that the
output automaton should be in Promela. Second, each out-
put automaton, in the form of a Promela never-claim, was
checked by SPIN. (SPIN never claims are descriptions of
behaviors that should never happen.) In this role, SPIN serves
as a search engine for each of the LTL translation tools; it
takes a never claim and checks it for nonemptiness in con-
junction with an input model.13 In practice, this means we
call spin -a on the never claim and the universal model
to compile these two files into a C program, which is then
compiled using gcc and executed to complete the verifica-
tion run.

In all tests, the model was a universal Promela program,
enumerating all possible traces over Prop. For example,
when Prop = {A, B}, the Promela model is:

bool A,B;
/* define an active procedure

to generate values for A and B */
active proctype generateValues()
{ do

:: atomic{ A = 0; B = 0; }
:: atomic{ A = 0; B = 1; }
:: atomic{ A = 1; B = 0; }
:: atomic{ A = 1; B = 1; }
od }

12 http://rcsg.rice.edu/ada/.
13 An interesting alternative to SPIN’s nested depth-first search algo-
rithm [13] would be to use SPOT’s SCC-based search algorithm [25].
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We use the atomic{} construct to ensure that the Bool-
ean variables change value in one unbreakable step. When
combining formulas with this model, we also preceeded each
formula with an X -operator to skip SPIN’s assignment upon
declaration and achieve nondeterministic variable assign-
ments in the initial time steps of the test formulas. Note that
the size of this model is exponential in the number of atomic
propositions. It is also possible construct a model that is lin-
ear in the number of variables like this14:

bool A,B;
active proctype generateValues()
{ do

:: atomic{
if

:: true -> A = 0;
:: true -> A = 1;

fi;
if

:: true -> B = 0;
:: true -> B = 1;

fi;
}
od }

However, in all of our random and counter formulas, there
never more than three variables. For these small numbers
of variables, our (exponentially sized) model is more simple
and contains fewer lines of code than the equivalent linearly
sized model. When we did scale the number of variables for
the pattern formula benchmarks, we kept the same model for
consistency. The scalability of the universal model we chose
did not affect our results because all of the explicit tool tests
terminated early enough that the size of the universal model
was still reasonably small. (At eight variables, our model
has 300 lines of code, whereas the linearly sized model we
show here has 38.) Furthermore, the timeouts and errors we
encountered when testing the explicit-state tools occurred in
the LTL-to-automaton stage of the processing. All of these
tools spent considerably more time and memory on this stage,
making the choice of universal Promela model in the counter
and pattern formula benchmarks irrelevant: the tools consis-
tently terminated before the call to SPIN to combine their
automata with the Promela model.

SMV. We compare the explicit tools with CadenceSMV
and NuSMV. To check whether a LTL formula ϕ is satisfi-
able, we model check ¬ϕ against a universal SMV model.
For example, if ϕ = (X (a U b)), we provide the following
inputs to NuSMV and CadenceSMV15:

14 We thank Martin De Wulf for asking this question.
15 In our experiments we used FAIRNESS to guarantee that the model
checker returns a representation of an infinite trace as counterexample.

NuSMV: CadenceSMV:
MODULE main module main () {
VAR
a : boolean; a : boolean;
b : boolean; b : boolean;

LTLSPEC !(X(a=1 U b=1)) assert !(X(a U b));
FAIRNESS FAIR TRUE;
1 }

SMV negates the specification, ¬ϕ, symbolically compiles
ϕ into Aϕ , and conjoins Aϕ with the universal model. If the
automaton is not empty, then SMV finds a fair path, which
satisfies the formula ϕ. In this way, SMV acts as both a sym-
bolic compiler and a search engine.

SAL-SMC. We also chose SAL-SMC to compare to the
explicit tools. We used a universal model similar to those for
CadenceSMV and NuSMV. (In SAL-SMC, primes are used
to indicate the values of variables in the next state.)

temp: CONTEXT =
BEGIN

main: MODULE =
BEGIN
OUTPUT

a : boolean,
b : boolean

INITIALIZATION
a IN {TRUE,FALSE};
b IN {TRUE,FALSE};

TRANSITION
[ TRUE -->

a’ IN {TRUE,FALSE};
%next time a is in true or false

b’ IN {TRUE,FALSE};
%next time b is in true or false

]

END; %MODULE

formula: THEOREM main |- ((((G(F(TRUE)))))
=> (NOT( U(a,b) )));

END %CONTEXT

SAL-SMC negates the specification, ¬ϕ, directly trans-
lates ϕ into Aϕ , and conjoins Aϕ with the universal model.
Like the SMVs, SAL-SMC then searches for a counterex-
ample in the form of a path in the resulting model. There is
not a separate command to ensure fairness in SAL models
like those which appear in the SMV models above.16 There-
fore, we ensure SAL-SMC checks for an infinite counter-
example by specifying our theorem as � ♦(true) → ¬ϕ.

16 http://sal-wiki.csl.sri.com/index.php/FAQ#Does_SAL_have_
constructs_for_fairness.3F.
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4.2 Input formulas

We benchmarked the tools against three types of scalable
formulas: random formulas, counter formulas, and pattern
formulas. Scalability played an important role in our exper-
iment, since the goal was to challenge the tools with large
formulas and state spaces. All tools were applied to the same
formulas and the results (satisfiable or unsatisfiable) were
compared. The symbolic tools, which were always in agree-
ment, were considered as reference tools for checking
correctness.

Random formulas. In order to cover as much of the prob-
lem space as possible, we tested sets of 250 randomly gen-
erated formulas varying the formula length and number of
variables as in [15]. We randomly generated sets of 250 for-
mulas varying the number of variables, N , from 1 to 3, and
the length of the formula, L , from 5 up to 65. We set the
probability of choosing a temporal operator P = 0.5 to cre-
ate formulas with both a nontrivial temporal structure and
a nontrivial Boolean structure. Other choices were decided
uniformly. We report median running times as the distribution
of run times has a high variance and contains many outliers.
All formulas were generated prior to testing, so each tool was
run on the same formulas. While we made sure that, when
generating a set of length L , every formula was exactly of
length L and not up to L , we did find that the formulas were
frequently reducible. Conversely, subformulas of the form
ϕRψ had to be expanded to ¬(¬ϕ U ¬ψ) since most of the
tools do not implement the R operator directly. Tools with
better initial formula reduction algorithms performed well in
these tests. Our experiments showed that most of the formu-
las of every length we generated were satisfiable. Figure 1
demonstrates the distribution of satisfiability for the case of
2-variable random formulas.

Counter formulas Pre-translation rewriting is highly
effective for random formulas, but ineffective for structured
formulas [20,42]. To measure performance on scalable, non-
random formulas we tested the tools on formulas that describe
n-bit binary counters with increasing values of n. These for-
mulas are irreducible by pre-translation rewriting, uniquely
satisfiable, and represent a predictably-sized state space.
Whereas our measure of correctness for random formulas is
a conservative check that the tools find satisfiable formulas to
be satisfiable, we check for precisely the unique counterex-
ample for each counter formula. We tested four constructions
of binary counter formulas, varying two factors: number of
variables and nesting of X ’s.

We can represent a binary counter using two variables: a
counter variable and a marker variable to designate the begin-
ning of each new counter value. Alternatively, we can use
three variables, adding a variable to encode carry bits, which
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a = 1 & b = 0 a = 0 & b = 0 a = 1 & b = 1 a = 0 & b = 0

a = 1 & b = 0

a = 0 & b = 1a = 1 & b = 1a = 0 & b = 1

a = 1 & b = 0

Fig. 2 Example: 2-bit binary counter automaton (a marker; b counter)

eliminates the need for U-connectives in the formula. We
can nest X ’s to provide more succinct formulas or express the
formulas using a conjunction of unnested X -sub-formulas.

Let b be an atomic proposition. Then a computationπ over
b is a word in (2{0,1})ω. By dividingπ into blocks of length n,
we can view π as a sequence of n-bit values, denoting the
sequence of values assumed by an n-bit counter starting at 0,
and incrementing successively by 1. To simplify the formu-
las, we represent each block b0, b1, . . . , bn−1 as having the
most significant bit on the right and the least significant bit
on the left. For example, for n = 2 the b blocks cycle through
the values 00, 10, 01, and 11. Figure 2 pictures this automa-
ton. For technical convenience, we use an atomic proposition
m to mark the blocks. That is, we intend m to hold at point i
precisely when i = 0 mod n.

For π to represent an n-bit counter, the following proper-
ties need to hold:

1) The marker consists of a repeated pattern of a 1
followed by n-1 0’s.

2) The first n bits are 0’s.
3) If the least significant bit is 0,

then it is 1 n steps later and
the other bits do not change.
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4) All of the bits before and including the first 0
in an n-bit block flip their values
in the next block; the other bits do not change.

For n = 4, these properties are captured by the conjunction
of the following formulas:

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))
&& (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. []( (m && !b) ->

( X(X(X(X(b)))) &&
X ( ( (!m) &&

(b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b))))) ) U m ) ) )

4. [] ( (m && b) ->
( X(X(X(X(!b)))) &&

(X ( (b && !m && X(X(X(X(!b))))) U
(m ||
(!m && !b && X(X(X(X(b)))) &&
X( ( !m && (b -> X(X(X(X(b))))) &&

(!b -> X(X(X(X(!b))))) ) U
m ) ) ) ) ) ) )

Note that this encoding creates formulas of length O(n2).
A more compact encoding results in formulas of length O(n).
For example, we can replace formula (2) above with:

2. ((!b) && X((!b) && X((!b) && X(!b))))

We can eliminate the use of U-connectives in the formula
by adding an atomic proposition c representing the carry bit.
The required properties of an n-bit counter with carry are as
follows:

1) The marker consists of a repeated pattern of a 1
followed by n-1 0’s.

2) The first n bits are 0’s.
3) If m is 1 and b is 0 then c is 0

and n steps later b is 1.
4) If m is 1 and b is 1 then c is 1

and n steps later b is 0.
5) If there is no carry,

then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit

n steps later and adjust the carry.

For n = 4, these properties are captured by the conjunction
of the following formulas.

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))

&& (X(X(X(!m))))

&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))

3. [] ( (m && !b) -> (!c && X(X(X(X(b))))) )

4. [] ( (m && b) -> (c && X(X(X(X(!b))))) )

5. [] (!c && X(!m)) ->

( X(!c) && (X(b) -> X(X(X(X(X(b)))))) &&

(X(!b) -> X(X(X(X(X(!b)))))) )

6. [] (c -> ( ( X(!b) ->

( X(!c) && X(X(X(X(X(!b))))) ) ) &&

( X(c) && X(X(X(X(X(b))))) ) ))

The counterexample trace for a 4-bit counter with carry is
given in the following table. (The traces of m and b are, of
course, the same as for counters without carry.)

A 4-bit Binary Counter
m 1000 1000 1000 1000 1000 1000
b 0000 1000 0100 1100 0010 1010
c 0000 1000 0000 1100 0000 1000

m 1000 1000 1000 1000 1000 1000
b 0110 1110 0001 1001 0101 1101
c 0000 1110 0000 1000 0000 1100

m 1000 1000 1000 1000 1000 …
b 0011 1011 0111 1111 0000 …
c 0000 1000 0000 1111 0000 …

Pattern formulas. We further investigated the problem
space by testing the tools on the eight classes of scalable for-
mulas defined by [24] to evaluate the performance of explicit
state algorithms on temporally-complex formulas.

E(n) =
n∧

i=1

♦pi

U (n) = (. . . (p1 U p2) U . . .) U pn

R(n) =
n∧

i=1

(�♦pi ∨ ♦�pi+1)

U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .)

C1(n) =
n∨

i=1

�♦pi

C2(n) =
n∧

i=1

�♦pi

Q(n) =
∧
(♦pi ∨ �pi+1)

S(n) =
n∧

i=1

�pi

5 Experimental results

Our experiments resulted in two major findings. First, most
LTL translation tools are research prototypes, not industrial
quality tools. Second, the symbolic approach is clearly supe-
rior to the explicit approach for LTL satisfiability checking.

5.1 The scalability challenge

When checking the satisfiability of specifications we need
to consider large LTL formulas. Our experiments focus on
challenging the tools with scalable formulas. Unfortunately,
most explicit tools do not rise to the challenge. In general,
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Fig. 3 Performance results: 2-variable counters

the performance of explicit tools degrades substantially as
the automata they generate grow beyond 1,000 states. This
degradation is manifested in both timeouts (our timeout
bound was 4 hours per formula) and errors due to mem-
ory management. This should be contrasted with BDD tools,
which routinely handle hundreds of thousands and even mil-
lions of nodes.

We illustrate this first with run-time results for counter
formulas. We display each tool’s total run time, which is
a combination of the tool’s automaton generation time and
SPIN’s model analysis time. We include only data points for
which the tools provide correct answers; we know all counter
formulas are uniquely satisfiable. As is shown in Figs. 3
and 4,17 SPOT is the only explicit tool that is somewhat
competitive with the symbolic tools. Generally, the explicit
tools time out or die before scaling to n = 10, when the
automata have only a few thousands states; only a few tools
passed n = 8.

We also found that SAL-SMC does not scale. Figure 5
demonstrates that, despite median run times that are compa-
rable with the fastest explicit-state tools, SAL-SMC does not
scale past n = 8 for any of the counter formulas. No matter
how the formula is specified, SAL-SMC exits with the mes-
sage “Error: vector too large” when the state space increases
from 28 × 8 = 2048 states at n = 8 to 29 × 9 = 4608
states at n = 9. SAL-SMC’s behavior on pattern formulas
was similar (see Figs. 8 and 13). While SAL-SMC consis-
tently found correct answers, avoided timing out, and always
exited gracefully, it does not seem to be an appropriate choice
for formulas involving large state spaces. (SAL-SMC has the

17 We recommend viewing all figures online, in color, and magnified.
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added inconvenience that it parses LTL formulas differently
than all of the other tools described in this paper: it treats all
temporal operators as prefix, instead of infix, operators.)

Figures 6 and 7 show median automata generation and
model analysis times for random formulas. Most tools, with
the exception of SPOT and LTL2BA, timeout or die before
scaling to formulas of length 60. The difference in perfor-
mance between SPOT and LTL2BA, on one hand, and the rest
of the explicit tools is quite dramatic. Note that up to length
60, model analysis time is negligible. SPOT and LTL2BA
can routinely handle formulas of up to length 150, while
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CadenceSMV and NuSMV scale past length 200, with run
times of a few seconds.

Figure 8 shows performance on the E-class formulas.
Recall that E(n) = ∧n

i=1 ♦pi . The minimally-sized automa-
ton representing E(n)has exactly 2n states in order to remem-
ber which pi ’s have been observed. (Basically, we must
declare a state for every combination of pi ’s seen so far.)
However, none of the tools create minimally sized automata.
Again, we see all of the explicit tools do not scale beyond
n = 10, which is minimally 1024 states, in sharp contrast to
the symbolic tools.
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Fig. 8 E-Class formula data

Graceless degradation Most explicit tools do not behave
robustly and die gracelessly. When LTL2Buchi has difficulty
processing a formula, it produces over 1,000 lines of java.
lang.StackOverflowError exceptions. LTL2BA
periodically exits with “Command exited with non-zero sta-
tus 1” and prints into the Promela file, “ltl2ba: releasing a free
block, saw ’end of formula’.” Python traceback errors hin-
der LTL→NBA. Modella suffers from a variety of memory
errors including *** glibc detected *** double
free or corruption (out): 0x 55ff4008 ***.
Sometimes Modella causes a segmentation fault and other
times Modella dies gracefully, reporting “full memory”
before exiting. When used purely as a LTL-to-automata trans-
lator, SPIN often runs for thousands of seconds and then
exits with non-zero status 1. TMP behaves similarly. Wring
often triggers Perl “Use of freed value in iteration” errors.
When the translation results in large Promela models, SPIN
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frequently yields segmentation faults during its own compi-
lation. For example, SPOT translates the formula E(8) to an
automaton with 258 states and 6,817 transitions in 0.88 sec-
onds. SPIN analyzes the resulting Promela model in 41.75
seconds. SPOT translates the E(9) formula to an automaton
with 514 states and 20,195 transitions in 2.88 seconds, but
SPIN segmentation faults when trying to compile this model.
SPOT and the SMV tools are the only tools that consistently
degrade gracefully; they either timeout or terminate with a
succinct, descriptive message.

A more serious problem is that of incorrect results, i.e.,
reporting “satisfiable” for an unsatisfiable formula or vice
versa. Note, for example, in Fig. 8, the size of the automaton
generated by TMP is independent of n, which is an obvious
error. The problem is particularly acute when the returned
automaton Aϕ is empty (no state). On one hand, an empty
automaton accepts the empty language. On the other hand,
SPIN conjoins the Promela model for the never-claim with
the model under verification, so an empty automaton, when
conjoined with a universal model, actually acts as a universal
model. The tools are not consistent in their handling of empty
automata. Some, such as LTL2Buchi and SPOT, return an
explicit indication of an empty automaton, while Modella
and TMP just return an empty Promela model. We have taken
an empty automaton to mean “unsatisfiable.” In Fig. 9 we
show an analysis of correctness for random formulas. Here
we counted “correct” as any verdict, either “satisfiable” or
“unsatisfiable,” that matched the verdict found by the two
SMVs for the same formula as the two SMVs always agree.
We excluded data for any formulas that timed out or triggered
error messages. Many of the tools show degraded correctness
as the formulas scale in size.

Does size matter? The focus of almost all LTL trans-
lation papers, starting with [26], has been on minimizing
automata size. It has already been noted that automata min-
imization may not result in model checking performance
improvement [20] and specific attention has been given to
minimizing the size of the product with the model [24,40].
Our results show that size, in terms of both number of automa-
ton states and transitions, is not a reliable indicator of
satisfiability checking run time. Intuitively, the smaller the
automaton, the easier it is to check for nonemptiness. This
simplistic view, however, ignores the effort required to mini-
mize the automaton. It is often the case that tools spend more
time constructing the formula automaton than constructing
and analyzing the product automaton. As an example, con-
sider the performance of the tools on counter formulas. We
see in Figs. 3 and 4 dramatic differences in the performance of
the tools on such formulas. In contrast, we see in Figs. 10 and
11 that the tools do not differ significantly in terms of the size
of generated automata. (For reference, we have marked on
these graphs the minimum automaton size for an n-bit binary
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Fig. 10 Automata size: 2-variable counters

counter, which is (2n) ∗ n + 1 states. There are 2n numbers
in the series of n bits each plus one additional initial state,
which is needed to assure the automaton does not accept
the empty string.) Similarly, Fig. 8 shows little correlation
between automata size and run time for E-class formulas.

Consider also the performance of the tools on random
formulas. In Fig. 12 we see the performance in terms of size
of generated automata. Performance in terms of run time is
plotted in Fig. 14, where each tool was run until it timed out
or reported an error for more than 10% of the sampled for-
mulas. SPOT and LTL2BA consistently have the best perfor-
mance in terms of run time, but they are average performers
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in terms of automata size. LTL2Buchi consistently produces
significantly more compact automata, in terms of both states
and transitions. It also incurs lower SPIN model analysis
times than SPOT and LTL2BA. Yet LTL2Buchi spends so
much time generating the automata that it does not scale
nearly as well as SPOT and LTL2BA.

5.2 Symbolic approaches outperform explicit approaches

Across the various classes of formulas, the symbolic tools
outperformed the explicit tools, demonstrating faster perfor-
mance and increased scalability (We measured only
combined automata generation and model analysis time for
the symbolic tools. The translation to automata is symbolic
and is very fast; it is linear in the size of the formula [11].)
We see this dominance with respect to counter formulas in
Figs. 3 and 4, for random formulas in Figs. 6, 7, and 14,
and for E-class formulas in Fig. 8. For U -class formulas,
no explicit tools could handle n = 10, while the symbolic
SMV tools scale up to n = 20; see Fig. 13. Recall that
U (n) = (. . . (p1 U p2) U . . .) U pn , so while there is not
a clear, canonical automaton for each U -class formula, it is
clear that the automata size is exponential.

The only exception to the dominance of the symbolic
tools occurs with 3-variable linear counter formulas, where
SPOT outperforms all symbolic tools. We ran the tools on
many thousands of formulas and did not find a single case
in which any symbolic tool yielded an incorrect answer yet
every explicit tool gave at least one incorrect answer during
our tests.

The dominance of the symbolic approach is consistent
with the findings in [37,38], which reported on the superiority
of a symbolic approach with respect to an explicit approach
for satisfiability checking for the modal logic K. In contrast,
[41] compared explicit and symbolic translations of LTL to
automata in the context of symbolic model checking and
found that explicit translation performs better in that context.
Consequently, they advocate a hybrid approach, combining
symbolic systems and explicit automata. Note, however, that
not only is the context in [41] different than here (model
checking rather than satisfiability checking), but also the for-
mulas studied there are generally small and translation time
is negligible, in sharp contrast to the study we present here.
We return to the topic of model checking in the concluding
discussion.

Figures 6, 7, and 14 reveal why the explicit tools gen-
erally perform poorly. We see in the figures that for most
explicit tools automata generation times by far dominate
model analysis times, which calls into question the focus
in the literature on minimizing automata size. Among the
explicit tools, only SPOT and LTL2BA seem to have been
designed with execution speed in mind. Note that, other than
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Fig. 13 U -Class formula data

Modella, SPOT and LTL2BA are the only tools implemented
in C/C++.

6 Discussion

Too little attention has been given in the formal verifica-
tion literature to the issue of debugging specifications. We
argued here for the adoption of a basic sanity check: sat-
isfiability checking for both the specification and the com-
plemented specification. We showed that LTL satisfiability
checking can be done via a reduction to checking universal
models and benchmarked a large array of tools with respect
to satisfiability checking of scalable LTL formulas.

We found that the existing literature on LTL-to-automata
translation provides little information on actual tool perfor-
mance. We showed that most LTL translation tools, with the
exception of SPOT, are research prototypes, which cannot be
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Fig. 14 Automata generation and SPIN analysis times for 3-variable
random formulas

considered industrial quality tools. The focus in the literature
has been on minimizing automata size, rather than evaluat-
ing overall performance. Focusing on overall performance
reveals a large difference between LTL translation tools. In
particular, we showed that symbolic tools have a clear edge
over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiabili-
ty checking, there are a couple of conclusions that apply
to model checking in general. First, LTL translation tools
need to be fast and robust. In our judgment, this rules out
implementations in languages such as Perl or Python and
favors C or C++ implementations. Furthermore, attention
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needs to be given to graceful degradation. In our experience,
tool errors are invariably the result of graceless degradation
due to poor memory management. Second, tool developers
should focus on overall performance instead of output size.
It has already been noted that automata minimization may
not result in model checking performance improvement [20]
and specific attention has been given to minimizing the size
of the product with the model [40]. Still, no previous study
of LTL translation has focused on model checking perfor-
mance, leaving a glaring gap in our understanding of LTL
model checking.
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